About 61 results
Open links in new tab
  1. 希腊字母epsilon的两种写法ϵ,ε,一般认为哪个是原型,哪个是变体?

    希腊字母epsilon的两种写法ϵ,ε,一般认为哪个是原型,哪个是变体? 我一直以为前者是原型,因为TeX中两者分别记为\epsilon,\varepsilon 但在Microsoft Word的数学公式输入器中却将两者分别… …

  2. notation - What does the letter epsilon signify in mathematics ...

    This letter "$\\varepsilon$" is called epsilon right ? What does it signify in mathematics ?

  3. 强化学习qlearning,用衰减的Epsilon贪婪策略 ,Epsilon什么时候衰 …

    强化学习qlearning,用衰减的Epsilon贪婪策略 ,Epsilon什么时候衰减? 强化学习qlearning,用衰减的Epsilon贪婪策略 ,训练过程中Epsilon是每一个episode衰减,还是在episode中每个step(… 显示全 …

  4. analysis - What does "$\epsilon$" mean in this formula - Mathematics ...

    Apr 19, 2022 · The symbol is called "epsilon," and is simply a variable, just like x x or y y. However, note that ϵ ϵ is most commonly used in analysis as an arbitrarily small (but positive) value.

  5. notation - Backwards epsilon - Mathematics Stack Exchange

    What does the $\\ni$ (backwards element of) symbol mean? It doesn't appear in the Wikipedia list of mathematical symbols, and a Google search for "backwards element of" or "backwards epsilon" turns...

  6. 为什么ε在中国广泛被念做伊普西龙,然而他的发音是epsilon …

    Nov 10, 2021 · 知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专 …

  7. What is epsilon algebra and why is it important in Numerical Analysis ...

    Jun 21, 2018 · The epsilon algebra is a simple method compared to the more advanced interval arithmetic which can be used to put bounds on rounding and measurement errors in computation. …

  8. 如何能更好地理解(ε-δ)语言极限的定义? - 知乎

    本文主要给出一个我自己思考得到的 ϵ δ 的几何模型来帮助建立这种直觉。 这个模型主要强调的不是严格性,而是着重于如何帮助理解。 1 ϵ δ 的几何模型 1.1 ϵ δ 的定义 \epsilon -\delta 极限定义的描述方 …

  9. Good Explanation of Epsilon-Delta Definition of a Limit?

    Nov 18, 2021 · I'm really doing my best but completely failing to understand the epsilon-delta definition of a limit. I vaguely understand it like this: Given a bound on the difference between the input and …

  10. 为什么极限的 ε-N 和 ε-δ 语言具有划时代的意义? - 知乎

    没有ε-N语言和ε-δ语言,在当时就没法 严密 刻画极限. 极限是微积分的基础,连续性、微分、积分、级数等概念都要建立在其上. 不严密定义极限,就意味着很多结论不可靠,微积分就变成了一种仅仅是形 …